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Abstract

We prove existence theorems for two-dimensional non-compact complete minimal surfaces
in Rn of annular type which span a given contour and have a finite total curvature end and
prescribed asymptotical behaviour. For arbitrary rectifiable Jordan curves we show the
existence of such surfaces with a flat end, i. e. within bounded distance from a 2-plane. For
more restricted classes of curves we prove the existence of minimal surfaces with higher
multiplicity flat ends as well as of surfaces with polynomial type non-flat ends.

1 Introduction

Let Γ be a rectifiable Jordan curve in Rn. The exterior Plateau problem for Γ asks for
a complete non-compact minimal surface spanning Γ. While geometric measure theory may
easily provide the existence of solutions of unspecified topological type to this problem, we in
this paper are interested in finding surfaces of annular type which moreover have a specified
asymptotical behaviour at infinity. Whereas embedded finite total curvature ends of minimal
surfaces in R3 must be asymptotic to a plane or to a half catenoid, there is a large variety of
different such ends in Rn as soon as n ≥ 4: algebraic complex curves in a complex subspace of
Rn yield plenty of examples. This makes the higher codimensional Plateau problem even more
interesting than the corresponding problem in R3 which was investigated by R. Ye and one of
the present authors [T-Y]. Though in higher codimension one may construct many candidates
of solutions of different asymptotic behaviour, it seems to be quite difficult to actually verify
their behaviour at infinity, apart from the simplest case of a flat end. This difficulty is due
to the lack of the usual comparison principle for codimension one mimimal surfaces. Instead
we must rely on a more general barrier principle for minimal surfaces of arbitrary codimension
which we established in a previous paper [J-T]. So far, our supply of useful and non-trivial
barriers is however rather limited, due to their cumbersome construction.

The plan of the paper is as follows. In section 2 we first prove an existence result for compact
minimal annuli which is based on Morgan’s characterization of area minimizing sums of two
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2-planes in Rn [M]. We then apply this to construct families of expanding compact minimizing
annuli spanning a fixed ”inner” Jordan curve Γ and an ”outer” Jordan curve from a family
ΓR, R ≥ R0, which is obtained as the intersection of a model surface M0 with spheres of radius
R. Here we assume that M0 is a complete simply connected, area-minimizing, finite total
curvature minimal surface with an embedded end and that the asymptotical tangent plane of
M0 is not orthogonal to the affine subspace of minimal dimension containing Γ. Subsequently,
we show that there are sequences Rk → +∞(k →∞) such that the minimizing annuli spanning
Γ ∪ ΓRk

converge to a limit surface when k →∞. In section 3 we investigate the asymptotical
behaviour of the limit surfaces and show that they are complete and have a finite total curvature
end. In the case that M0 is a plane we prove that the limit surfaces have a flat end of geometric
index 1, the asymptotic tangent plane having the direction of M0. In section 4, we apply our
barrier principle [J-T] and the concept of incompressible surfaces to establish the existence of
complete finite total curvature surfaces with a flat end of geometric index m > 1 spanning the
Jordan curve Γ provided that Γ is contained in the non-simply connected domain bounded by
one of our catenoidal barriers and has the winding number m. Finally, in section 5 we construct
a barrier around the end of the model surface M0 = {(z, w) ∈ C×C|w = zm},m ∈ N, which is
contained in a distance 1 neighborhood of M0. This immediately leads to an existence theorem
for solutions to Plateau’s problem asymptotic to this M0.

Some of the arguments in the sections 2 and 3 of this paper are identical with those in the
codimension 1 case treated in [T-Y], some arguments are essentially different. For instance,
the curvature estimates used in [T-Y] are not available in codimension > 1. We present the
complete proofs in order to make the paper better readable.

2 The Expanding Minimal Annuli

The basis of our construction is Morgan’s characterization of the singularity structure of two-
dimensional area minimize surfaces in Rn [M]. We use this characterization in the following
Lemma to verify Douglas’ condition for the existence of least area annuli spanning a given pair
of Jordan curves in Rn [D].

Let us introduce some notation:

DR : = {u = (u1, u2) ∈ R2| | u |≤ R} , R > 0 ,

AR : = DR \ int(D1) R > 1 ,

Bρ(p) : = {x ∈ Rn
∣∣∣ |x− p| ≤ ρ}, p ∈ Rn, ρ > 0 .

Lemma 2.1 Let M1, M2 ⊂ Rn be classical disc type least area surfaces spanning the rectifiable
Jordan curves Γ1 and Γ2, respectively, i.e. M1 and M2 are the images of continuous maps
xk : D1 → Rn, k = 1, 2, where xk|∂D1 parameterizes Γk, xk is a harmonic conformal branched
immersion in the interior of D1, and xk minimizes area among all maps y ∈ C0(D1,Rn) ∩
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C0,1(
◦
D1,Rn) such that y|∂D1 parameterizes Γk weakly monotonically. We assume furthermore

that there are points wi ∈
◦
D1, k = 1, 2, such that wk is regular for xk, x1(w1) = x2(w2), and the

tangent spaces Tk of xk at wk are not mutually orthogonal. Then there is an orientation O of
Γ1 ∪ Γ2 and a number δ > 0 such that

(2.1) a(Γ1 ∪ Γ2,O) ≤ area(M1) + area(M2)− δ,

where a(Γ1 ∪ Γ2,O) denotes the infinium of the area of all mappings y ∈ C0(A2,Rn)∩
C0,1 (

◦
A2,Rn) such that y|∂A2 parameterizes Γ1 ∪Γ2 coherent with the orientation O. Hence, it

follows from Douglas’ theorem [D] that Γ1 ∪ Γ2 with the chosen orientation O spans a classical
least area annulus, i.e. there are a number r > 1 and a harmonic, conformal, branched im-

mersion x of
◦
Ar into Rn which is continuous on Ar and such that x|∂Ar parameterizes Γ1 ∪Γ2

coherent with O and area(x) = a(Γ1 ∪ Γ2,O).

Proof: We may assume that x1(w1) = x2(w2) = 0, the origin of our coordinate system.

Let us denote by ∆k(ρ) ⊂ Tk the discs of radius ρ and center 0. Since by assumption T1 and
T2 are not orthogonal, it follows from Corollary 6 of [M] that the discs ∆1(1) and ∆2(1) can
be oriented in such a way that ∆1(1) + ∆2(1) is not area minimizing in the class of oriented
surfaces. We choose such an orientation O of ∆1(1) and ∆2(1) and, if necessary, we reorient the
surfaces x1 and x2 in such a way that the induced orientation of the tangent spaces T1 and T2

coincides with O. Beyond the statement of Morgan’s Corollary 6 we need the following more
precise information from the proof of Theorem 2 in the same paper: there is a smooth annulus
type surface C with ∂C = ∂∆1(1) + ∂∆2(1) and area(C) < 2π. Since xk is an embedding
near wk for k = 1, 2 there are neighborhoods Uk of wk and ρo > 0 such that xk(Uk) has a
one-to-one orthogonal projection onto ∆k(ρo) ⊂ Tk. Let us denote by Mk(ρ) the piece of
xk(Uk) which projects onto ∆k(ρ) ; k = 1, 2 ; 0 < ρ ≤ ρo. By the smoothness of xk the
vertical height of Mk(ρ) over ∆k(ρ) is estimated by const.ρ2 and we may therefore construct
cylindrical annuli Ck(ρ) with ∂Ck(ρ) = ∂Mk(ρ)−∂∆k(ρ) and area(Ck(ρ)) ≤ const.ρ3. It follows
that Sρ := C1(ρ) + ρC + C2(ρ) is an annulus with boundary ∂Sρ = ∂M1(ρ) + ∂M2(ρ) and
area(Sρ) ≤ ρ2area(C1(1))+const.ρ3. Since area(C1(1)) < 2π we may find ρ > 0 and δ > 0 such
that area(Sρ) ≤ 2πρ2 − δ and hence

(2.2) area(Sρ) ≤ area(M1(ρ)) + area(M2(ρ))− δ.

We may now delete the discs Mk(ρ) from Mk and join the resulting annuli Mk −Mk(ρ) by Sρ

to obtain an annulus Mρ with ∂Mρ = Γ1 ∪ Γ2 and, as follows immediately from (2.2),

area(Mρ) ≤ area(M1) + area(M2)− δ.

Remark 2.2 As the above proof shows, the number δ in the Douglas condition(2.1) depends
only on the restriction of the surfaces xk onto some neighborhood of wk (k = 1, 2).
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We shall now apply Lemma 2.1 in the situation when M1 is a fixed least area disc M spanning
the given Jordan curve Γ and M2 is the intersection of a model surface M0 with a ball of radius
R, denoted by MR

0 . We assume the following about M0 : M0 is a complete, simply connected,
finite total curvature minimal surface with an embedded end and all compact subdiscs of M0 are
area-minimizing among disc type surfaces. Complex algebraic curves in some complex subspace
of Rn yield plenty of examples of such model surfaces.

It follows from the above properties of M0 that M0 possesses a limit tangent space at infinity
which we denote by T .

Let then Γ ⊂ Rn, n ≥ 4, be a rectifiable Jordan curve contained in the unit ball of Rn, and
let V ⊂ Rn be the affine subspace of Rn of minimal dimension containing Γ. Let M denote
a classical least area disc spanning Γ. By the convex hull property of minimal surfaces, M is
contained in V and by the minimality of dimV the tangent spaces of M generate the tangent
space of V . Hence, if the asymptotic tangent space of T of M0 is not orthogonal to V , there is
an open set of points on M whose tangent spaces are not orthogonal to T . We may therefore
choose a regular point p on M and a regular point q on M0 such that their tangent spaces are
not orthogonal. After a translation of M0 we may assume that p = q. We finally observe that
ΓR := ∂MR

0 is a smooth Jordan curve for R ≥ R0 > 1 since the end of M0 is embedded by
assumption. From Lemma 2.1 and Remark 2.2 we therefore obtain

Lemma 2.3 Let Γ ⊂ B1(0) be a rectifiable Jordan curve, and M0 as described above, and as-
sume that the subspace of minimal dimension containing Γ is not orthogonal to T , the asymp-
totic tangent space of M0. Then, after translating and possibly reorienting M0 there exist, for
any R > R0, classical least area annuli MR spanning Γ ∪ ΓR. The annuli MR are given by

harmonic, conformal, branched immersions xR :
◦
Ar(R)→ Rn, where xR is continuous on Ar(R)

and xR|∂Ar(R) maps ∂Ar(R) topologically onto Γ ∪ ΓR, coherent with the chosen orientation of
Γ ∪ ΓR. Moreover, there is a number δ > 0 such that the inequalities

(2.3) area(MR) ≤ area(M) + area(MR
o )− δ

hold for all R > R0, where M is a least area disc spanning Γ.

By a well know cut-and-paste argument [T-T] one infers from the uniform Douglas-condition
(2.3) a uniform “condition of cohesion”.

Corollary 2.4 There is a number ε > 0 such that the length of the images under any xR of
all homotopically non-trivial loops in Ar(R) is bounded below by ε. One may take any ε <

√
δ.

Now we are going to establish uniform (with respect to R) local area estimates for the
surfaces MR. These follow easily from the monotonicity formula for minimal surfaces with
boundary [E-W-W]: let M be any minimal surface in Rn with C1 boundary ∂M and for p ∈ Rn

and ρ > 0 let us define
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Mρ := M ∩Bρ(p), (∂M)ρ := ∂M ∩Bρ(p), d(x) := |x− p|.

Then the following formula holds:

∂

∂ρ

(
area(Mρ)

ρ2

)
≥ − 1

ρ3

∫

(∂M)ρ

d〈∇d, ν〉ds,

where ν denotes the unit exterior surface normal along ∂M. If (∂M)ρ is contained in Br(p) we
obtain the estimate

∂

∂ρ

(
area(Mρ)

ρ2

)
≥ − r

ρ3
length(∂M)ρ.

Let us apply this formula to our annuli with p = 0 and 1 < ρ < R such that (∂M)ρ = Γ
and consequently r ≤ 1. By integration we obtain

(2.4) R−2area(MR)− ρ−2area((MR)ρ) ≥
(

1

2
R−2 − 1

2
ρ−2

)
length(Γ)

It is well known, that M0 has quadratic area growth, i.e. there exist positive numbers a and m
such that,

area(MR
0 ) ≤ a + mπR2 .

Combining this with (2.3) and (2.4) we obtain

Lemma 2.5 The annuli MR fulfill the estimate

area((MR)ρ) ≤ γ + mπρ2, 1 ≤ ρ ≤ R,

with γ := area(M) + 1/2length(Γ) + a.

Completely analogous to the proceeding in [T-Y] we may now control the conformal para-
meterization xR : Ar(R) → Rn of MR. Because of the conformality the area of xR over any
domain G coincides with the Dirichlet energy.
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E(xR, G) :=
1

2

∫ ∫

G

(∣∣∣∣
∂

∂u1

∣∣∣∣
2

+

∣∣∣∣
∂

∂u2

∣∣∣∣
2
)

du1du2

We introduce the following subdomains of the parameter domain Ar(R) :

Ω(xR, ρ) : = (xR)−1(Bρ),
A(xR, ρ) : = the component of Ω(xR, ρ) containing ∂D1 = S1

Lemma 2.6

(i) dist(∂A(xR, ρ) \ S1, ∂A(xR, 2ρ) \ S1) ≥ exp(−4π(γ + mπ)), 1 < ρ < R/2
(ii) dist(O, ∂A(xR, ρ)) ≥ c ln ρ for some positive constant c, 1 < ρ < R

(iii) r(R) ≥ c ln r

Proof: Let us choose a point z ∈ ∂A(xR, ρ) \ S1 such that

dist(z, ∂A(xR, 2ρ) \ S1) = ro := dist(∂A(xR, ρ) \ S1, ∂A(xR, 2ρ) \ S1).

We need only consider the case when ro < 1. Let us define Dr(z) := {u ∈ R2 | |u− z| ≤ r}
and ∂∗Dr(z) := ∂Dr(z) ∩A(xR, 2ρ). According to the Lemma of Courant-Lebesgue [C, p. 101]
there exists r1 ∈ (ro,

√
ro) such that

(∫

∂∗Dr1(z)

∣∣∣∣
∂xR

∂θ

∣∣∣∣ dθ

)2

≤ 4π

− ln ro

E(xR, A(xR, 2ρ))

(2.5)

≤ − 4π

ln ro

area((MR)2ρ).

Since r1 ≥ ro and by the definition of A(xR, 2ρ) there must be an arc in ∂∗Dr1(z) connecting
∂A(xR, 2ρ) with Ω(xR, ρ). Hence the left hand side of (2.5) has the lower bound ρ2 and Lemma
2.5 immediately gives (i). Assertion (ii) is an easy consequence of (i)(cf. Lemma 2.4 of [T-Y])
and (iii) follows trivially from (ii).

Lemma 2.5 and Lemma 2.6 yield directly the

Corollary 2.7

(i) sup
Ar

|xR| ≤ er/c

(ii) E(xR, Ar) ≤ γ + mπe2r/c, 1 < r < r(R).
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We may now prove the existence of limit surfaces to our family of least area annuli. We
define A := {u ∈ R2| |u| ≥ 1}.

Proposition 2.8 For every sequence Rk → +∞(k →∞) there is a subsequence (again denoted

by Rk) and a map x ∈ C0(A,Rn) ∩ C∞(
◦
A,Rn) with the following properties:

(i) x| ◦A is a harmonic, conformal branched immersion,
(ii) x|∂A maps ∂A topologically onto Γ,

(iii) xRk
→ x(k →∞) in C∞(

◦
A), in C0(Ar), and weakly in W 1,2(Ar) for every r > 1.

Proof: The existence of a subsequence of (Rk) and a limit map x :
◦
A→ Rn such that xRk

→ x

in C∞(
o

A) and weakly in W 1,2(Ar) for every r follows immediately from Corollary 2.7. The
map x must be harmonic and conformal and, unless it is constant, a branched immersion as
a C∞-limit of maps with these properties. From the local energy bound (Corollary 2.7) and
the condition of cohesion (Corollary 2.4) we obtain by a well-know argument (cf. T-T) the
uniform continuity of the sequence (xRk

|S1). It follows that x extends as a continuous map on
A and that x maps ∂A weakly monotonically onto Γ, in particular, x is not constant. Since x
is conformal and harmonic, x|∂A must actually be a topological map.

3 The asymptotical behavior of the limit surfaces

In this section we investigate further the properties of a minimal surface x : A → Rn which is
obtained by the limiting process of Proposition 2.8. In particular, we would like to show that
x has a properly immersed finite total curvature end. Finally, we prove our first main result,
Theorem 3.5 about solutions with a flat end as announced in the introduction.

Lemma 3.1 E(x, Ω(x, ρ)) ≤ γ + mπρ2, ρ > 1.

Proof: Let C be any compact subset of
◦
Ω (x, ρ). Because of the convergence xRk

→ x, k →∞,
we have C ⊂ Ω(xRk

, ρ) for sufficiently large k and Lemma 2.5 yields

E(x,C) ≤ lim infk→∞ E(xRk
, C)

≤ γ + mπρ2.

The assertion of the lemma follows.

Lemma 3.2 Each component of Ω(x, ρ) is a bounded subset of A for any ρ > 1.

Proof: (cf. [T-Y]) Let us first show that Ω(x, ρ) 6= A for any ρ, i.e. that x is not bounded.
We consider the map x∗ : D∗

1 → Rn, D∗
1 := D1 \ {0}, x∗(z) := x(1/z). If x were bounded,

so were x∗ and hence x∗ had a removable singularity at the origin. It follows that the length
of x∗(∂Dr) = x(∂D1/r) converges to 0 when r → 0, whence the length(xRk

(∂Dρ)) becomes
arbitrarily small for large k and ρ, contradicting Corollary 2.4.
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Let us now assume that Ωo is an unbounded component of Ω(x, ρ) for some ρ. Let us choose
a regular value ρ′ of d ◦ x = |x|, ρ′ > ρ, and let Ω′ denote the component of Ω(x, ρ′) containing
Ωo. Then Ω′ is also unbounded and hence ∂Ω′ \S1 consists of finitely many properly embedded
unbounded analytic curves. Let us again consider x∗ instead of x and let Ω∗ be the image
of Ω′ under the map z 7→ 1/z. From Lemma 3.1 and the invariance of Dirichlet’s integral
under conformal maps it follows that E(x∗, Ω∗) is finite and we may hence apply the lemma of
Courant-Lebesgue [C ] to find a radius r, 0 < r < 1, such that length(x∗(Ω∗ ∩ ∂Dr)) < ρ′ − ρ.
Since any component of Ω∗∩∂Dr must meet ∂Ω∗ we conclude that |x∗| > ρ on Ω∗∩∂Dr. Hence
Ω′ ∩ A1/r is a bounded set such that |x| > ρ on ∂(Ω′ ∩ A1/r) \ S1. We may choose r so small
that Ω′ ∩ A1/r contains some point of Ωo. It follows then that Ωo ⊂ Ω′ ∩ A1/r and hence Ωo is
bounded.

Proposition 3.3 The map x is proper, i.e. |x(u)| → +∞ for |u| → +∞.

Proof: Let ρ > 1 be arbitrarily chosen and let Ω1, Ω2, . . . denote those components of Ω(x, 2ρ)
which are different from A(x, 2ρ) and contain some point wk ∈ Ωk with |x(wk)| < ρ. Then x(Ωk)
is a disc type minimal surface which has no boundary in the interior of the ball Bρ(x(wk)). It
follows from the monotonicity formula (cf. section 2) that E(x, Ωk) ≥ πρ2. In view of Lemma 3.1
we conclude that there can exist only finitely many such Ωk, say Ω1, . . . , Ωl. On the complement
of A(x, 2ρ)∪Ω1∪. . .∪Ωl we have the inequality |x| ≥ ρ and hence Ω(x, ρ) ⊂ A(x, 2ρ)∪Ω1∪. . .∪Ωl.
The latter is a bounded set by Lemma 3.2 and hence Ω(x, ρ) is bounded.

Proposition 3.4 For each ρ > 1, x|A\Aρ is a finite total curvature minimal surface with only
finitely many branch points; in particular, x has an immersed end.

Proof: Branch points being isolated points, we may choose a radius σ > ρ > 1, σ arbitrarily
large and ρ arbitrarily close to 1 such that x and xRk

are immersed along ∂Dρ∪∂Dσ for k ≥ k0 .
Denoting by O(x, u) the order of a branch point u of a minimal surface x and setting O(x, u) = 0
for regular points u, we obtain from the Gauss-Bonnet formula for branched minimal surfaces
[D-H-K-W, Ch. 7.11]

2π
∑

u∈Aσ\Aρ

O(x, u)−
∫ ∫

Aσ\Aρ

Kdω =

∫

∂(Aσ\Aρ)

κgds

where K and dω denote the Gauss curvature and the area element of x and κg and ds the
geodesic curvature and the arclength element of the boundary curves x(∂(Aσ \ Aρ)). By the

smooth convergence of xRk
to x on

◦
A and again applying the Gauss-Bonnet formula on xRk

we
obtain
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2π
∑

u∈Aσ\Aρ
O(x, u)− ∫∫

Aσ\Aρ
Kdω = limk→∞

∫
∂(Aσ\Aρ)

κk
gdsk

= limk→∞
(
2π

∑
u∈Aσ\Aρ

O(xk, u)− ∫∫
Aσ\Aρ

Kkdωk
)

≤ lim sup
k→∞

,


2π

∑

u∈Ar(Rk)\Aρ

O(xk, u)− ∫∫
Ar(Rk)\Aρ

Kkdωk




= lim supk→∞
∫

∂(Ar(Rk)\Aρ)
κk

gdsk

≤ lim supk→∞ curv(ΓRk
)− ∫

∂Dρ
κgds,

where curv(ΓR) denotes the total absolute curvature of the curve ΓR. It is however well known
[J-M] that 1

R
ΓR, ΓR being the intersection of a finite total curvature end with a sphere of radius

R, converges smoothly to a finite multiple of a great circle on the unit sphere. Hence curv(ΓR)
is bounded above independently of R and the assertion of the lemma follows.

We may now state and prove our first main result,

Theorem 3.5 Let Γ ⊂ B1(0) ⊂ Rn be a rectifiable Jordan curve and T a twodimensional
subspace of Rn which is not orthogonal to the affine subspace of minimal dimension containing
Γ. Then there exists a complete, non-compact, area-minimizing annulus M∞ of finite total
curvature spanning Γ and possessing a flat end asymptotic to T i. e. M\BR(0) is a bounded
graph over T for a sufficiently large R.

Proof: We choose M0 = T in the construction of section 2 above. Let M∞ be a limit surface
of some sequence (MRk

). It follows from the convex hull property of minimal surfaces that
each MR and hence M∞ is contained in the slab S := {x ∈ Rn |dist(x, T ) ≤ 1}. Since by
Proposition 3.4 M∞ is known to be a properly immersed (possibly with branch points) finite
total curvature surface it possesses a well defined asymptotic tangent space T∞ [H − O] and
hence 1

R
M∞∩∂BR(0) converges smoothly to a multiple of the unit circle in T∞ [J-M]. But M∞

being contained in the slab S, this unit circle must be contained in T and, therefore, T∞ = T .
M0 = T being a plane, the area estimates Lemma 2.5 and, hence, Lemma 3.1 hold with m = 1.
Now choose R so big that all points of M∞\BR(0) are regular for the orthogonal projection
P : Rn → T . This is possible since M∞ has an immersed end by Proposition 3.4 and since T
is the asymptotic tangent plane of M∞. We may then conclude from the area estimate Lemma
3.1 (with m = 1) that the degree of P |M∞\BR(0) must be ±1, i. e. M∞\BR(0) has only one
sheet over T . 2

4 Flat ends of higher index

In this section we use the concept of incompressible surfaces to find, for suitable Jordan curves,
solutions to the exterior Plateau problem with a flat end of index m, i. e. the minimal surface
remains at bounded distance to its asymptotic tangent plane at infinity and the orthogonal
projection of the surface onto this plane has the topological degree m ∈ N. As in the preceding
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sections, this solution is obtained as the limit of compact annuli where it is arranged that their
projection map has the desired degree m. The main difficulty is of course to guarantee that in
the limit the degree does not jump to a lower value. To accomplish this we make strong use of
a barrier construction which enables us to apply the concept of incompressible surfaces. The
barrier construction is made possible by our comparison principle for minimal submanifolds of
arbitrary codimension [J-T].

Our barriers are the boundaries of the domains

Dλ = {(z, w) ∈ R2 × Rn−2 | |w| ≤ ϕλ(|z|)},

where ϕλ is one of the catenaries

ϕλ(t) = λ`n

(
t/λ +

√
t2/λ2 − 1

)
, t ≥ λ > 0.

It has already been shown in [J-T] that ∂Dλ is ”2-mean convex” with respect to the normal
pointing into Dλ and hence is a barrier for twodimensional minimal surfaces. We observe that

P (Dλ) = {z ∈ R2
∣∣∣ |z| ≥ λ}, where P : R2 × Rn−2 → R2 is the projection onto the first factor.

Let us consider a rectifiable Jordan curve Γ ⊂ int Dλ such that P (Γ) has the winding number
m ∈ N with respect to the origin in the z-plane and for any R > 1 let ΓR denote the Jordan
curve

ΓR(ζ) =
(√

R2 − 1ζm, ζ, 0, . . . , 0
)

, ζ ∈ S1,

where we split Rn as Rn = C× C× Rn−4.
We observe that ΓR ⊂ ∂BR(0), ΓR ⊂ int Dλ for sufficiently big R, P (ΓR) has winding number

m, and, furthermore

length(ΓR) ≤ mR,

curv(ΓR) ≤ 2mπ.

It follows that, whenever f : Ar → Dλ is any continuous map such that f |∂Ar parametrizes
Γ−ΓR, then the induced map on fundamental groups f∗ : π1(Ar) → π1(Dλ) is conjugate to the
map Z 3 k ⇒ mk ∈ Z and hence is injective. It follows from standard theory [T-T] that there
exists a branched minimal annulus MR ⊂ Dλ spanning Γ− ΓR, parametrized by a conformal,
branched, harmonic map XR : Ar(R) → Dλ in the above conjugacy class and which minimizes
area among all such maps. One easily constructs admissible comparison maps of area not larger
mR2π + mRπ + a0 with a fixed constant a0, independent of R and hence

area(MR) ≤ mR2π + 2mRπ + a0

The condition of cohesion (cf. Corollary (2.4)), is trivially satisfied for MR with ε = 2mπλ.
From the above facts we may conclude that the theory of the preceding sections becomes
applicable and that, for a suitable sequence Rk → ∞, XRk converges locally uniformly to a
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proper, branched, finite total curvature minimal surface X : A → Dλ spanning Γ. It follows
immediately that the induced map X∗ on fundamental groups is conjugate to k 7→ mk, and,
since P : Dλ → Dλ is homotopic to the identity of Dλ, and (PX)∗ is conjugate to k 7→ mk
as well. This proves that PX has degree m on the unbounded component of P (Γ). It follows
from the convex hull property of minimal surfaces that all of the XR and hence X remain at
bounded distance from the z-plane. Hence we proved

Theorem 4.1 Let Γ ⊂ Dλ be a rectifiable Jordan curve such that PΓ has the winding number
m around the origin, where P : R2 × Rn−2 → R2 is the orthogonal projection. Then Γ spans a
complete finite total curvature minimal annulus M ⊂ Dλ with a flat end and the z-plane as its
asymptotic tangent space. Moreover, P |M has the topological degree m.

5 Surfaces with a polynomial end

In this section we choose as our model surface M0 the complex curve

(5.1) w = zm

where (z, w) ∈ C× C ∼= R4 and m ∈ N.

For some sufficiently large R > 0 we shall construct a neighborhood B of M0∩{|w| > R} which
lies within bounded distance of M0 and which has 2-mean convex boundary ∂B. Since B has
the homotopy type of the circle, the methods of the previous paragraphs yield the existence of
complete minimal annuli within B spanning a given homotopically nontrivial Jordan curve in
B.

The asymptotical tangent plane at infinity of M0 being the w-plane, we prefer, simultaneously
interchanging z and w, to write (5.1) in the equivalent form

(5.2) w = z1/m,

thus representing the surface as an m-sheeted graph (outside of the origin) over its asymptotical
tangent plane. Locally we may write (5.2) as a single valued graph

(5.3) z = x1 + ix2 , w = u1 + iu2

where u1 and u2 are functions of (x1, x2) which are solutions of the Cauchy- Riemann equations

D1u1 = D2u2, D2u1 = −D1u2, Dj =
∂

∂xj

.

An orthogonal basis (e1, e2) of the tangent bundle and an orthonormal basis (N1, N2) of the
normal bundle of M0 are therefore given by

e1 = (1, 0, D1u1, D1u2), e2 = (0, 1, D2u1, D2u2)
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and
N1 = λ−1(−D1u1, D2u2, 1, 0), N2 = λ−1(D2u1,−D2u2, 0, 1)

where λ =
√

1 + |Du1|2 =
√

1 + |Du2|2. Since

|Duj| = 1

m
ρ1/m−1, |D2uj| ≤ cρ1/m−2

with ρ = |z| =
√

x2
1 + x2

2 we obtain

(5.4) |Djek| ≤ cρ1/m−2, |〈Djek, e`〉| ≤ cρ2/m−3 ,

|DjNk| ≤ cρ1/m−2, |DijNk| ≤ cρ1/m−3,

the constant c depending only on M0.
As a first step we seek the desired neighborhood B of M0 in the form

(5.5) B = {(z, w) ∈ C2| dist((z, w),M0) ≤ f(|z|)}

where f is still to be determined. In order to calculate the second fundamental form of ∂B
we choose a local representation of M0 of the form (5.3) which we denote by X. A local
parametrization Y of ∂B is then obtained as

(5.6) Y (x1, x2, N) = X(x1, x2) + f(ρ)N

where N varies in the normal unit sphere of M0 at (x1, x2). The computations to follow are
facilitated by means of

Lemma 5.1 Given any point p ∈ M0 we may locally modify the basis (N1, N2) in such a way
that the relations

(5.7) 〈DkNi, Nj〉 = 0 (i, j, k = 1, 2)

hold at p. The estimates (5.4) remain valid.

Proof: We define the modified basis by Ñ1 = cos ϕN1 + sin ϕN2, Ñ2 = − sin ϕN1 + cos ϕN2

with a function ϕ = ϕ(x1, x2) yet to be determined. The new basis being again orthonormal,
it suffices to consider the case i = 1, j = 2 in (5.7). One finds

〈DkÑ1, Ñ2〉 = Dkϕ + 〈DkN1, N2〉

and we may therefore choose ϕ as a first order polynomial in (x1, x2) such that ϕ(p) = 0 and
Dkϕ(p) = −〈D1N1(p), N2(p)〉. 2

We start by calculating a local basis (T1, T2, T3) for the tangent bundle of ∂B, substituting
N = cos θN1 + sin θN2:

Tj = DjY = ej + f ′(δ)Djρ(cos θN1 + sin ρN2) + f(cos θDjN1 + sin θDjN2), (j = 1, 2),
T3 = DθY = f(− sin θN1 + cos θN2)
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Shifting the angular variable θ we may assume that θ = 0 at the point under consideration.
The metric tensor (gij) then becomes

gij = λ2δij + 2f〈DiN1, ej〉+ f
′2DiρDjρ + f 2〈DiN1, DjN1〉 (i, j = 1, 2),

gi3 = 0 (i = 1, 2)
g33 = f 2.

Introducing the normalizations

(5.8) 0 ≤ f ≤ 1 , |f ′| ≤ 1, ρ ≥ 1

we obtain from (5.5) and (5.6)

gij = λ2δij + O(ρ1/m−2f + f
′2), (i, j = 1, 2)

Here and in what follows the growth rate of the O-term depends only on M0, always taking
(5.8) into account. For the inverse matrix we then get

gij = λ−2δij + O(ρ1/m−2f + f
′2) (i, j = 1, 2)

(5.9) gi3 = 0 (i = 1, 2)

g33 = f−2.

A normal vector ν for ∂B may be written in the form

ν = α1e1 + α2e2 + cos θN1 + sin θN2,

the coefficients αj being determined from the relations

0 = 〈ν, Tj〉 = λ2αj +
∑
i=1,2

fαi(〈DjN1, ei〉 cos θ + 〈DjN2, ei〉 sin θ) + f ′Djρ (j = 1, 2).

After an orthogonal coordinate transformation we may assume that

(5.10) 〈DiNi, ej〉 = κi〈ei, ej〉 = κiλ
2δij,

the κi being the principal curvatures of M0 in direction N1. Our normalization θ = 0 and (5.10)
lead to

αj = −λ−2(1 + fκj)
−1f ′Djρ,
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assuming from now on ρ ≥ ρ0 to ensure 1 + fκj ≥ 1
2
. Continuing towards the calculation of

the second fundamental form we need

DjTi = Djei + (f ′′(ρ)DiρDjρ + f ′(ρ)Dijρ)(cos θN1 + sin θN2) + f ′(ρ)Diρ(cos θDjN1+

sin θDjN2) + f ′(ρ)Djρ(cos θDiN1 + sin θDiN2) + f(ρ)(cos θDijN1+

sin θDijN2), (i, j = 1, 2),

D3Ti = DθTi = f ′(ρ)Diρ(− sin θN1 + cos θN2) + f(ρ)(− sin θDiN1 + cos θDiN2), (i = 1, 2),

D3T3 = DθT3 = f(− cos θN1 − sin θN2).

Again using (5.7), (5.10) and the normalization θ = 0 we calculate bij := −〈ν, DjTi〉 as follows:

bij = − ∑
k=1,2

αk〈Djei, ek〉 − f ′(ρ)Diρ αjκjλ
2 − f ′(ρ)Djρ αiκiλ

2 + λ2κiδij

−f ′′(ρ)DiρDjρ− f ′(ρ)Dijρ− f〈∑ αkek + N1, DijN1〉, (i, j = 1, 2),

bi3 = − ∑
k=1,2

αkf〈DiN2, ek〉 (i = 1, 2),

b33 = f.

By means of (5.4), and (5.10) we obtain the estimates

bij = λ2κiδij − (f ′′(ρ)DiρDjρ + f ′Dijρ)

(5.11) +O(ρ2/m−3f ′ + ρ1/m−2f
′2 + ρ2/m−4), (i, j = 1, 2),

bi3 = O(ρ1/m−2f ′f) (i = 1, 2),

b33 = f.

Let us now consider the submatrices

G = (gij)ij=1,2, B = (bij)i,j=1,2 .

(5.19) and (5.11) yield the following representation for the second fundamental tensor A in
direction ν:

(5.12) A = (gij)(bij) = A0 + O(ρ1/m−2(ff ′ + f ′/f))

14



with

A0 =




0
G B

0
0 0 1/f


 .

Since G = λ−2I + O(f
′2 + ρ1/m−2) and B = O(ρ1/m−2 + |f ′′|+ ρ−1|f ′|) we conclude that

(5.13) GB = λ−2B + O((f
′2 + ρ1/m−2)(ρ1/m−2 + |f ′′|+ |f ′|/ρ)).

Let us now choose

f(ρ) = 1− ρ−β

with β ∈]0, 2[. Using the minimality of M0 we obtain

trace B = −(f ′′(ρ) +
1

ρ
f ′(ρ)) + O(ρ2/m−3f ′ + ρ1/m−2f

′2 + ρ2/m−4) = ρ−2−β + O(ρ2/m−4).

Together with (5.15) this yields the estimate for the eigenvalues λi(GB)

(5.14) λ1(GB) + λ2(GB) = trace(GB)

= λ−2ρ−2−β + O(ρ2/m−4) .

The eigenvalues λi(A0) being

λ1(A0) = λ1(GB), λ2(A0) = λ2(GB), λ3(A0) = 1/f,

where λi(A0) = O(‖B‖) = O(ρ1/m−2) for i = 1, 2, we see immediately that

(5.15) λ1(A0) + λ2(A0) ≥ 1

2
λ−2ρ−2−β,

λi(A0) + λ3(A0) ≥ 1

2
f(ρ)−1.

provided that we choose β ∈]0, 2 − 2/m[ and ρ ≥ ρ0, ρ0 depending on M0 and β. It remains
to estimate the difference between the eigenvalues λi(A) and λi(A0). We have f ′(ρ)/f(ρ) ≤
2βρ−1−β for ρ ≥ 21/β and hence we conclude from (5.12) that

(5.16) λi(A)− λi(A0) = O(ρ1/m−3−β).
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Comparing (5.15) and (5.16) we see that the sum of any two eigenvalues of A is positive for
ρ ≥ ρ0, proving the 2-mean convexity of ∂B outside of the cylinder x2

1 +x2
2 ≤ ρ2

0. Let us remark
that all our estimates being direct, the bound ρ0 can be computed explicitly.

Since we can show the 2-mean convexity of the boundary of the set B defined in (5.5) only
for |z| ≥ ρ0 for some sufficiently large ρ0 it becomes necessary to modify the definition of B in
order to obtain a set with everywhere 2-mean convex boundary. Consequently we define

(5.17) B = Bρ ∪ Tρ

with

(5.18) Bρ = {(z, w) |dist((z, w),M0) ≤ f(|z|), |z| ≥ ρ}

and Tρ essentially being a tubular neighborhood of the curve Cρ = M0 ∩ {|z| = ρ}
Introducing polar coordinates (ρ, ϕ) in the z-plane and a further angular variable ψ we para-
meterize ∂Tρ by the map

(5.19) Zρ(s,N, ψ) = X(ρ, ϕ) + δg(ψ)N + h(s) sin ψDρX(ρ, ϕ)

where s = ρϕ, 0 ≤ ϕ ≤ 2mπ, π/2 ≤ ψ ≤ π/2, N varies in the normal unit sphere bundle of
M0 restricted to Cρ, δ > 0, and g as well as h are yet to be determined with g(ψ) = cos ψ near
ψ = ±π/2. Let us remark that ψ = ±π/2 does not introduce any boundary in (5.19) since the
curve Zρ(s,N, ·) closes up withe Zρ(s,−N, ·). The plan is to glue half of ∂Tρ, i. e. the portion
of ∂Tρ corresponding to ψ ∈ [−π/2, 0] to 5.14 ∂Bρ along the surface Zρ(·, ·, 0) for some large
ρ = ρ0, Bρ being defined in (5.18). The gluing condition of order zero is

Zρ(ρϕ,N, 0) = Y (ρ, ϕ, N),

which is equivalent to

(5.20) δg(0) = f(ρ) .

It will be sufficient to make the gluing of class C1, simultaneously keeping the pieces ∂Bρ and
∂Tρ strictly 2-mean convex, because then ∂Bρ ∪ ∂Tρ may be further smoothened in a standard
way.

Let us start by computing a local basis (V1, V2, V3) of the tangent bundle of ∂Tρ:

V1 := DsZρ = 1
ρ
DϕZρ = 1

ρ
{DϕX + δg(ψ)(cos θDϕN1 + sin θDϕN2)

(5.21) +ρh′(s) sin ψDρX + h sin ψDρϕX}
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V2 := DθZρ = δg(ψ)(− sin θN1 + cos θN2)

V3 := DψZρ = δg′(ψ)(cos θN1 + sin θN2) + h cos ψDρX

Comparing with (5.6) at θ = 0, ψ = 0 and, besides (5.20) also requiring that

(5.22) δg′(0) = f ′(ρ)

we see that
DϕY = ρV1 , DθY = V2 ,

DρY = DρX + f ′N1 + fDρN1,

V3 = hDρX + f ′N1.

Hence, in order that the tangent spaces of ∂Bρ and ∂Tρ along the glueing surface coincide
we must adjust h in such a way that DρY becomes a linear combination of V1, V2, and V3.
According to Lemma 5.1 we may write

DρN1 = α1DρX + α2DϕX, DϕN1 = β1DρX + β2DϕX

with
α1 = |DρX|−2〈DρN1, DρX〉, α2 = |DϕX|−2〈DρN1, DϕX〉

β1 = |DρX|−2〈DϕN1, DρX〉, β2 = |DϕX|−2〈DϕN1, DϕX〉.
From this we obtain

DϕX = (1 + β2f)−1V1 − fβ1(1 + β2f)−1DρX,

DρN1 = (α1 − fβ1(1 + β2f)−1)DρX + α2(1 + β2f)−1V1,

and hence

DρY = (1 + f(α1 − fβ1(1 + β2f)−1)DρX + f ′N1 + fα2(1 + β2f)−1V1,

from which we see that we must choose

h = 1 + f(ρ)(α1 − f(ρ)β1(1 + β2f(ρ))−1),

αj, βj being functions of the angle ϕ.

Using
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|DρX|2 = 1 + 1
m2 ρ2/m−2, |DϕX|2 = ρ2|DρX|2,

(5.23) |DρρX|2 = (m−1)2

m4 ρ2/m−4, |DϕϕX|2 = ρ2(1 + 1
m4 ρ2/m−2),

|DρϕX|2 = 1 + 1
m4 ρ2/m−2,

|DρNj| = O(ρ1/m−2), |DϕNj| = O(ρ1/m−1)

one verifies that αj and βj as well as their derivatives with respect to ϕ are at most of the order
O(ρ1/m−1) and hence, keeping s = ρϕ in mind,

(5.24) h = 1 + O(ρ1/m−1), h′ = O(ρ1/m−2)
h′′ = O(ρ1/m−3).

Let us now define the function g. We choose η ∈ C∞(R) with |η| ≤ 1, η(ψ) = 0 for ψ ≤
−π/4, η(0) = 0, η′(0) = 1 and, remembering that f(ρ) = 1− ρ−β, we define

g(ψ) = cos ψ + βρ−1−β(1− ρ−β)−1η(ψ).

Setting δ := 1− ρ−β we see that (5.20) and (5.22) are fulfilled. Moreover,

(5.25) Dj
ψ(g(ψ)− cos ψ) = O(ρ−1−β) for j = 0, 1, 2.

We would like to argue that, for large ρ, (5.19) is a C2-small perturbation of the standard
round tubular neighborhood of radius 1 of the curve X(ρ, ·) where δ = 1 and h = |DρX|−1 =

1/
√

1 + 1
m2 ρ2/m−2, implying that (5.19) would be 2-mean convex for sufficiently large ρ, since

this is certainly the case for the standard tube if ρ is sufficiently large. The C2 closeness is
obvious for the mapping Zρ on account of (5.24) and (5.25). In order to conclude the closeness
of the second fundamental forms one must make sure that the first fundamental forms remain
uniformly nonsingular. This does not seem to be case near ψ = −π/2 where V2 in (5.23)
becomes zero. But this this is simply a deficiency of our coordinate system which disappears if
we introduce new coordinates in the range [−π

2
, π

4
] according to

x1 = cos ψ cos θ, x2 = cos ψ sin θ

transforming (5.19) into

Zρ = X(ρ, ϕ) + δ(x1N1 + x2N2)− h(s)
√

1− (x2
1 + x2

2)DρX(ρ, ϕ).

It is easily seen that the metric tensor of Zρ in the coordinates (s = ρϕ, x1, x2) is uniformly
nonsingular for large ρ in the range x2

1 + x2
2 ≤ 1/2. Hence we proved
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Theorem 5.2 There is an explicitly computable number ρ0 > 0 so that the surface

Mρ0 := {(z, w) ∈ C2|w = zm, |w| ≥ ρ0}

admits a neighborhood B with 2-mean convex boundary. B retracts onto Mρ0 and the points of
B are within distance 1 from Mρ0, the distance between ∂B and Mρ0 approaching 1 at infinity.

2

We remark that the distance 1 condition is just a normalization; the number 1 can be replaced
by any positiv number, however with the effect that ρ0 has to be adjusted. On the basis of
Theorem 5.2 we finally obtain the following existence theorem along the same lines as in section
4.

Theorem 5.3 Let Mρ0 and B as in Theorem 5.2. Then, given any rectifiable Jordan curve
Γ in B which is freely homotopic in B to ∂Mρ0, there exists a complete annulus type minimal
surface M in B with boundary Γ and finite total curvature end. In particular, M stays within
distance 1 from Mρ0 and hence M behaves like w = zm at infinity.
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